If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+22t=9
We move all terms to the left:
t^2+22t-(9)=0
a = 1; b = 22; c = -9;
Δ = b2-4ac
Δ = 222-4·1·(-9)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{130}}{2*1}=\frac{-22-2\sqrt{130}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{130}}{2*1}=\frac{-22+2\sqrt{130}}{2} $
| -2+2w=6 | | h^2-22h-7=0 | | 15x+68=180 | | -5/3=-2/5v-7/4 | | (15+3)x=198 | | 4.603y-1.842=-3.65y | | 91=7z-(-14) | | -10.51-15.22+2.7u=17.21+6.5u | | -7x-12=-4x-12-3x | | 6=7f-22 | | -21-8x=-1+24-30x | | 2(z-83)=-50 | | 2x/3-12/3=2x/5 | | -14.8v-13.08=15.61+8.27-12.4v | | -7+6(7x+4)=14 | | 93+12x=3x-3+96 | | 10g−3g=7 | | 5y+7-2y=7+2y+7 | | 4(n-86)=16 | | 17.15+19.6z=-19.76+13z-13.25 | | 9-3x+x=21 | | 4u-8=2u | | 36x^2-369x+90=0 | | -63=-9(d-88) | | 26+17w=15w | | -2=-2r+-8 | | -19w-17=19-7w-14w | | 42+x+38=180 | | 5-4x+x=26 | | 81+68+x=180 | | 4y+-56=12y | | 50+0.75k=25+1,25k |